Synthetic Transformations of Higher Terpenoids: XV.* Transformations of Azlactone Derived from 16-Formyllambertianic Acid Methyl Ester

Yu. V. Kharitonov, E. E. Shul'ts, M. M. Shakirov, and G. A. Tolstikov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia e-mail: schultz@nioch.nsc.ru

Received June 1, 2006

Abstract—Condensation of 16-formyllambertianic acid methyl ester with hippuric acid gave methyl 15,16-epoxy-16-[(4Z)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-ylidenemethyl]labda-8(20),13(16),14-trien-19-oate which underwent ready transformation into 2-benzoylamino-3-(2-furyl)acrylic acid of the labdanoid series. Reactions of the diterpenoid azlactone with amines and α -amino acid esters led to the formation of the corresponding carbamoylvinylbenzamides and *N*-(2-benzoylaminoacryloyl) amino acid esters, and furylacrylic acid hydrazides were formed in reactions with hydrazines. Cyclization of the *N'*-phenylhydrazide by the action of 1 M aqueous sodium hydroxide gave the corresponding 1,2,4-triazin-6-one. By treatment of the azlactone with aqueous ammonia on heating, 4-substituted 2-phenyl-4,5-dihydroimidazol-5-one was obtained.

DOI: 10.1134/S1070428007060073

Reactions of aldehydes with acylaminoacetic acids (Erlenmeyer reaction) lead to the formation of oxazol-5(4*H*)-ones [2–4]. From the synthetic viewpoint, these reactions ensure preparation of amino acid derivatives under mild conditions. Aldehyde nature considerably affects the reaction course. Aromatic aldehydes and most heterocyclic aldehydes readily react with hippuric acid to give the corresponding oxazolones in good yields. However, the yields of condensation products from substituted aldehydes are not always satisfactory. Fatty aldehydes difficultly react with hippuric acid, while analogous reactions of terpenoid aldehydes were not studied.

The goal of the present work was to synthesize diterpenoid azlactone from 16-formyllambertianic acid methyl ester (I) [5] and study its reactions with nucleophiles. We have found that aldehyde I reacts with hippuric acid (II) under standard conditions (heating in boiling acetic anhydride in the presence of sodium acetate) [6] to give labdanoid oxazol-5(4H)-one III in 44% yield (conversion 56%) (Scheme 1). We failed to raise the product yield by increasing the reaction time to 90 min; by contrast, the yield was as poor as 25% as

Azlactone III smoothly reacted with primary amines [such as aniline, benzylamines, and phenylethyl(propyl)amines] and 7-aminoheptanoic acid on heating in benzene to give 59-91% of N-(1-carbamoylvinyl)benzamides IV-X (Scheme 1). The lowest yield was observed in the reaction with 3,5,6-trimethoxybenzylamine; extension of the alkyl chain between the benzene ring and amino group increases the product yield. Reactions of compound III with secondary amines (piperidine and N-methylphenylmethanamine required prolonged heating, and the corresponding terpenoid N-(carbamoylvinyl)benzamides XI and XII were isolated in 73-80% yield. Treatment of III with L-proline tert-butyl ester smoothly afforded 83% of pyrrolidine-containing labdanoid XIII. The NMR spectra of compounds XI and XIII in CDCl₃ revealed conformational isomerism arising from restricted rotation about the amide C-N bond; no such isomerism was observed in DMSO- d_6 [8]. Azlactone III readily reacted with α -amino acid (leucine and isoleucine)

a result of strong tarring. On the other hand, the yield of azlactone III increased to 76% when potassium carbonate was used instead of sodium acetate [7]. Compound III was formed as a single isomer having Z configuration of the double bond.

^{*} For communication XIV, see [1].

IV−**X**, R' = H; **IV**, R = Ph; **V**, R = PhCH₂; **VI**, R = 4-HOC₆H₄(CH₂)₂; **VII**, R = 3,4,5-(MeO)₃C₆H₂CH₂; **VIII**, R = 3,5-(*t*-Bu)₂-4-HOC₆H₂(CH₂)₃; **X**, R = HOCO(CH₂)₆; **XI**, R = PhCH₂, R' = Me; **XII**, RR' = (CH₂)₅; **XIII**, RR'N = 2-(*tert*-butoxycarbonyl)pyrrolidin-1-yl; **XIV**, R = MeCH₂CH(Me), R' = Me; **XV**, R = Me₂CHCH₂, R' = *t*-Bu.

esters, yielding 62–78% of terpenoid *N*-(2-benzoylaminoacryloyl) amino acid esters **XIV** and **XV**. Terpenoid oxazol-5(4*H*)-one **III** undergoes hydrolysis on treatment with a solution of hydrogen chloride in diethyl ether or with 10% alcoholic alkali; the hydrolysis product is individual α -acylamino acid **XVI** with *Z* configuration of the double bond.

Some naturally occurring heterocyclic diterpenoids (e.g., lissoclimides and echinophyllins) exhibit pronounced pharmacological activity [9, 10]. Taking this into account, we made an attempt to obtain nitrogencontaining heterocyclic derivatives via transformations of azlactone **III**. Reactions of **III** with hydrazines on heating in methanol gave the corresponding acrylic acid hydrazides **XVII** and **XVIII** in 77–90% yield (Scheme 2). It is known that hydrazides derived from α,β -unsaturated acids undergo cyclization to 1,2,4-triazin-6-ones [11] or pyrazole derivatives [12]. *N'*-Phenylhydrazide **XVIII** was converted into 3,5-disubstituted 1,2,4-triazin-6-one **XIX** in 80% yield by heating in 1 M aqueous sodium hydroxide for a short time. 4,5-Dihydroimidazol-5-one **XX** of the labdane series was synthesized in 56% yield by heating azlactone **III** with aqueous ammonia in the presence of a base in a sealed ampule. Compounds **XIX** and **XX** were isolated as individual isomers having Z configuration of the double bond.

The structure of labdanoids **III–XX** was proved by the analytical and spectral data. The ¹H NMR spectrum of azlactone **III** contained signals from protons in the diterpene fragment, a signal from the 4a-H olefinic proton, and signals from protons in the phenyl group at δ 7.41 (2H), 7.48 (1H), and 8.07 ppm (2H). The *Z* configuration of the exocyclic double bond was determined on the basis of the ³*J*_{CH} coupling constant in the ¹³C NMR spectrum. According to published data [13], the vicinal coupling constant between the carbonyl carbon atom in the oxazolone ring and olefinic H_β proton

XVII, R = H; XVIII, R = Ph.

[${}^{3}J(C^{5},4a-H)$] is 5.5 Hz for Z isomers **XXIa** and 12.5 Hz for *E* isomers **XXIb** (Scheme 3). In our case, the ${}^{3}J_{CH}$ coupling constant was equal to 5.1 Hz. The oxazolone C=O signal appears as a doublet at δ_{C} 167.53 ppm due to coupling with 4a-H; therefore, this signal can be readily distinguished from the nearby signals belonging to the C=N carbon atom (a multiplet at δ_{C} 162.14 ppm due to coupling with *ortho* protons of the phenyl group) and ester carbonyl carbon atom in the terpenoid moiety (δ_{C} 177.27 ppm). Likewise, we have assigned signals from the carbonyl groups and determined Z configuration of the olefinic bond in hydrolysis product **XVI**: ${}^{3}J(2'-C, 1'-H) = 5.1$ Hz; δ_{C} 167.60 (COOH), 166.40 ppm (NHCOPh).

Introduction of acylaminoacrylic acid fragments into the molecule of lambertianic acid methyl ester (**XXII**) gives rise to additional signals in the ¹H NMR spectra of compounds **IV–X**, which belong to protons in the amine moiety. The amide proton (CONHR) resonates as a broadened singlet in the region δ 6.7– 6.5 ppm, and the NH proton in the benzoylamino group gives a singlet at δ 8.7–8.5 ppm. Signals from the carbonyl carbon nuclei (δ_C 163–170 ppm and 166– 167 ppm for **CONHR** and NHCOPh, respectively) are readily distinguished in the ¹³C NMR spectra. The 1'-H

signal in the ¹H NMR spectra of **IV-X** appears in a stronger field ($\Delta \delta = 0.28-0.48$ ppm) relative to the corresponding signal of azlactone III. Analogous upfield shift of the $C^{1'}$ signal is observed in the ${}^{13}C$ NMR spectra (δ_C 110–112 ppm). N,N-Disubstituted amides XI-XIII characteristically showed in the ¹H NMR spectra an upfield shift of the 1'-H signal ($\Delta \delta = 1.06$ -1.25 ppm) as compared to azlactone III. Restricted rotation about the amide C-N bond in molecule XI (E/Z-conformer ratio 1:1) leads to doubling of signals from the benzylic CH₂ protons (δ 4.71, 4.78 ppm), olefinic 1'-H proton (δ 5.74 s, 5.81 s), and protons in the terpene fragment [\delta 6.32, 6.38 (14-H), 7.57, 7.58 (15-H), 4.90, 4.92 and 4.55, 4.57 ppm (17-H)] in the ¹H NMR spectrum recorded from a solution in CDCl₃. In the ${}^{13}C$ NMR spectrum of **XI**, signals from two carbonyl carbon atoms, $C^{1'}$, $C^{2'}$, C^{8} , C^{16} , and CH_2 $(\delta_{C} 32.93, 36.44 \text{ ppm})$ and CH₃ groups $(\delta_{C} 50.56,$ 55.16 ppm) are doubled. In going to DMSO- d_6 , no signal doubling is observed, for the conformational equilibrium is completely displaced toward one of the conformers (XIa or XIb; Scheme 3).

In the IR spectra of hydrazides **XVII** and **XVIII** we observed absorption bands typical of hydrazide and amide groups at 1640–1675, 3059, 3239, and 3431 cm^{-1} .

Three NH proton signals in the ¹H NMR spectrum of hydrazide XVIII are readily distinguished: the hydrazide CONH_aNH_bPh protons resonate as broadened singlets at δ 8.33 (H_a, halfwidth 5 Hz) and 6.26 ppm (H_b, halfwidth 12 Hz), and the NHCOPh signal is a singlet at δ 8.64 ppm. Singlets at δ 9.07 and 9.09 ppm in the ¹H NMR spectra of **XIX** were assigned to protons on N¹ and N⁴, respectively, of the 1,2,4-triazin-6-one fragment. Compound XIX was identified as 3,5-disubstituted 1,2,4-triazine derivative on the basis of the following data. Its ¹³C NMR spectrum contained three singlets at $\delta_{\rm C}$ 161.38, 123.96, and 159.49 ppm, which belong to C^6 , C^5 , and C^3 , respectively; they were assigned using two-dimensional ¹³C-¹H correlation technique (COLOC). The C^3 nucleus showed coupling with ortho protons in the phenyl substituent, and the C and C^6 nuclei were coupled with 5a-H. The coupling constant ${}^{3}J$ between C⁶ and 5a-H is 5.3 Hz, indicating Z configuration of the exocyclic double bond. The presence of a triazinone ring in molecule XIX is also confirmed by the mass spectrum of this compound, which contains a fragment ion peak with m/z 187 (*I*_{rel} 83.5%; phenylmethyldihydrotriazol-1-one).

The structure of imidazolone **XX** follows from the NMR data. Three singlets in the ¹³C NMR spectrum of **XX** at $\delta_{\rm C}$ 148.01, 158.04, and 174.05 ppm belong, respectively, to the C⁴, C², and C⁵ atoms of the imidazole ring. The C⁵ signal in the spectrum recorded without decoupling from protons appears as a doublet (³*J*_{CH} = 5.1 Hz) due to coupling with 4a-H; this coupling constant corresponds to *Z* configuration of the

exocyclic double C=C bond. The 4a-H signal is located at δ 7.03 ppm (br.s) in the ¹H NMR spectrum, i.e., it appears in a weaker field relative to the corresponding signal in the spectrum of **III**; the NH proton resonates as a singlet at δ 11.79 ppm.

Thus, the condensation of 16-formyllambertianic acid methyl ester with hippuric acid gives the corresponding 4,5-dihydrooxazol-5-one derivatives whose subsequent transformations open synthetic routes to new nitrogen-containing derivatives of the labdane series.

EXPERIMENTAL

The IR spectra were recorded in KBr on a Vector-22 spectrometer. The UV spectra were measured on an HP 8453 UV-Vis spectrophotometer from solutions in ethanol with a concentration of about 10^{-4} M. The NMR spectra were obtained from solutions in CDCl₃ on Bruker AV-300 (300.13 MHz for ¹H and 75.47 MHz for ¹³C), Bruker AM-400 (400.13 MHz for ¹H and 100.78 MHz for ¹³C), and Bruker DRX-500 instruments (500.13 for 1 H and 125.76 MHz for 13 C). Signals were assigned using various proton-proton and carbon-proton shift correlation techniques (COSY, COLOC, CORRD). The high-resolution mass spectra (electron impact, 70 eV) were run on a Finnigan MAT-8200 mass spectrometer (vaporizer temperature 200-270°C). The melting points were determined using a Kofler hot stage. The optical rotations were measured on a Polamat A polarimeter from solutions in

chloroform or ethanol at room temperature (20-23°C). The progress of reactions was monitored by TLC on Silufol UV-254 plates; spots were visualized by spraying with a 10% aqueous solution of sulfuric acid. Column chromatography was performed on KSK silica gel (grain size $0-70 \mu m$).

16-Formyllambertianic acid methyl ester (I) was synthesized from ester XXII according to the procedure reported in [5], and compound XXII was prepared as described in [14].

Methyl (Z)-(1S,4aR,5S)-1,4a-dimethyl-6-methylidene-5-{2-[2-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)furan-3-yl]ethyl}decahydronaphthalene-1-carboxylate {III, methyl 15,16-epoxy-16-[(4Z)-5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl]labda-8(20),13(16),14-trien-19oate}. a. Hippuric acid (II), 0.50 g (2.79 mmol), and potassium carbonate, 0.38 g (2.8 mmol), were added under stirring to a solution of 1.00 g (2.8 mmol) of aldehyde I in 15 ml of acetic anhydride. The mixture was stirred for 5 h and left overnight, and the precipitate was filtered off, washed with water, dried under reduced pressure, and recrystallized from petroleum ether-diethyl ether (2:1). Yield 1.06 g (76%).

b. Hippuric acid (II), 0.50 g (2.8 mmol), and sodium acetate, 0.23 g (2.8 mmol), were added to a solution of 1.00 g (2.8 mmol) of compound I in 15 ml of acetic anhydride. The mixture was heated for 1 h under reflux, cooled to room temperature, and passed through 25 g of aluminum oxide. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using petroleum ether-diethyl ether (4:1) as eluent to isolate 1.00 g of a mixture of initial compound I and product **III.** Recrystallization from petroleum ether–diethyl ether (6:1) gave 0.61 g (44%) of compound III. mp 112–115°C, $[\alpha]_D^{20} = 1.2^\circ$ (c = 7.7, CHCl₃). IR spectrum, v, cm⁻¹: 702, 780, 883, 983, 1551 (C=C); 1645, 1720, 1759, 1789 (C=O). UV spectrum, λ_{max} , nm (log ε): 232 (3.41), 266 (3.75), 392 (4.18), 409 (4.17). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.43 s (3H, $C^{17'}H_3$, 0.82 d.d.d (1H, 1'-H, J = 13.5, 13.2, 4.2 Hz), 0.90 t.d (1H, 3'-H, J = 13.2, 4.0 Hz), 1.06 s (3H, $C^{18'}H_3$, 1.13 d.d (1H, 5'-H, J = 12.4, 3.1 Hz), 1.38 d.m $(1H, 2'-H, {}^{2}J = 14.2 \text{ Hz}), 1.48 \text{ d} (1H, 9'-H, J =$ 10.8 Hz), 1.60-1.80 m (6H, 7'-H, 2'-H, 6'-H, 11'-H, 1'-H), 1.89 d.m (1H, 6'-H, ${}^{2}J = 13.2$ Hz), 2.05 d.d.d (1H, 3'-H, J = 13.2, 3.3, 1.3 Hz), 2.36 m (1H, 7'-H, ${}^{2}J = 12.6 \text{ Hz}$, 2.51 d.d.d (1H, 12'-H, J = 14.4, 9.0,7.7 Hz), 2.66 d.d.d (1H, 12'-H, J = 14.4, 7.8, 4.5 Hz),

3.51 s (3H, OCH₃), 4.53 s, 4.92 s (2H, 20'-H), 6.40 d (1H, 14'-H, J = 1.8 Hz), 6.92 s (1H, 4a-H), 7.41 m(2H, 3"-H, 5"-H), 7.48 m (1H, 4"-H), 7.68 d (1H, 15'-H, J = 1.8 Hz), 8.07 m (2H, 2"-H, 6"-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.36 q (C^{17'}), 19.54 t (C^{2'}), 23.49 t $(C^{12'})$, 23.89 t $(C^{11'})$, 25.90 t $(C^{6'})$, 28.39 q $(C^{18'})$, 37.74 t (C^{3'}), 38.19 t (C^{7'}), 38.65 t (C^{1'}), 39.78 s (C^{4'}), 43.87 s (C^{10'}), 50.81 q (OCH₃), 54.17 d (C^{9'}), 55.77 d $(C^{5'})$, 106.58 t $(C^{20'})$, 113.67 d $(C^{14'})$, 115.00 d (C^{4a}) , 125.32 s $(C^{1''})$, 127.86 d $(C^{2''}, C^{6''})$, 128.18 s (C^4) , 128.49 d (C^{3"}, C^{5"}), 132.64 d (C^{4"}), 137.80 s (C^{13'}), 146.80 s (C^{16'}), 147.14 s (C^{8'}), 147.71 d (C^{15'}), 162.14 s (C²), 167.53 s (C⁵), 177.27 s (C^{19'}). Found, %: C 74.03; H 7.11; N 2.7. C₃₁H₃₅NO₅. Calculated, %: C 74.25; H 6.99; N 2.79.

Methyl (1S,4aR,5S)-5-{2-[2-(2-benzoylamino-3oxo-3-phenylaminoprop-1-en-1-yl)furan-3-yl]ethyl}-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate [IV, methyl 16-(2-benzoylamino-3-oxo-3-phenylaminoprop-1-en-1-yl)-15,16epoxylabda-8(20),13(16),14-trien-19-oate]. Aniline, 0.11 g (1.2 mmol), was added to a solution of 0.50 g (1.0 mmol) of azlactone III in 7 ml of benzene, and the mixture was heated for 2 h at 70°C. After cooling, the precipitate was filtered off, washed with diethyl ether, and dried under reduced pressure. Yield 0.49 g (82%), mp 156–159°C, $[\alpha]_D^{20} = 14.8^\circ$ (c = 3.1, CHCl₃). IR spectrum, v, cm⁻¹: 700, 754, 891, 1500, 1600, 3075 (C=C); 1722 (C=O); 1638, 1657, 3420 [C(O)NH]. UV spectrum, λ_{max} , nm (log ϵ): 226 (3.89), 326 (4.05). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.45 s (3H, $C^{17}H_3$), 0.91 t.d (1H, 1-H, J = 13.5, 3.3 Hz), 0.98 t.d $(1H, 3-H, J = 13.6, 3.0 \text{ Hz}), 1.14 \text{ s} (3H, C^{18}H_3),$ 1.22 d.d (1H, 5-H, J = 12.8, 2.6 Hz), 1.45 d.m (1H, 2-H, ${}^{2}J = 12.8$ Hz), 1.48–1.53 m (2H, 9-H, 11-H), 1.61 m (1H, 11-H), 1.67–1.79 m (3H, 1-H, 6-H, 2-H), 1.85 t.d (1H, 7-H, J = 12.8, 3.2 Hz), 1.95 d.m (1H, 6-H, ${}^{2}J = 13.2$ Hz), 2.11 d.m (1H, 3-H, ${}^{2}J = 13.6$ Hz), 2.26 m (1H, 12-H, ${}^{2}J$ = 15.5 Hz), 2.38 d.t (1H, 7-H, J = 12.8, 2.6 Hz), 2.46 d.d.d (1H, 12-H, J = 15.5, 6.6, 4.2 Hz), 3.57 s (3H, OCH₃), 4.52 s and 4.90 s (1H each, 20-H), 6.40 d (1H, 14-H, J = 1.8 Hz), 6.85 s (1H, 1'-H), 7.04 t (1H, 4"-H, J = 7.6 Hz), 7.24 m (2H, 3"-H, 5"-H), 7.34 d (1H, 15-H, J = 1.8 Hz), 7.46 m (2H, 7'-H, 9'-H), 7.55 t (1H, 8'-H, J = 8.0 Hz), 7.57 m (2H, 2"-H, 6"-H), 7.95 d (2H, 6'-H, 10'-H, J = 7.6 Hz), 8.71 s (1H, 3'-H), 8.80 s (1H, NHPh). ¹³C NMR spectrum, δ_C , ppm: 12.47 q (C¹⁷), 19.73 t (C²), 23.20 t (C¹²), 24.14 t (C¹¹), 26.10 t (C⁶), 28.60 q (C¹⁸), 37.96 t (C^3) , 38.46 t (C^7) , 38.88 t (C^1) , 40.00 s (C^4) , 44.11 s (C^{10}) , 51.01 q (OCH₃), 54.75 d (C⁹), 55.92 d (C⁵),

106.53 t (C²⁰), 111.52 d (C^{1'}), 112.86 d (C¹⁴), 120.07 d (C^{2"}, C^{6"}), 123.99 d (C^{4"}), 126.40 s (C^{2"}), 127.44 d (C^{6'}, C^{10'}), 128.63 d and 128.66 d (C^{3"}, C^{5"}, C^{7'}, C^{9'}), 130.52 s (C¹³), 132.23 d (C^{8'}), 132.94 s (C^{1"}), 137.98 s (C^{5'}), 143.52 d (C¹⁵), 146.16 s (C¹⁶), 147.49 s (C⁸), 163.00 s (CONH), 166.00 s (C^{4'}), 177.62 s (C¹⁹). Found, %: C 74.52; H 7.79; N 4.59. C₃₇H₄₂N₂O₅. Calculated, %: C 74.75; H 7.71; N 4.71.

Methyl (1S,4aR,5S)-5-{2-[2-(2-benzoylamino-3benzylamino-3-oxoprop-1-en-1-yl)furan-3-yl]ethyl}-1.4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate [V, methyl 16-(2-benzoylamino-3-benzylamino-3-oxoprop-1-en-1-yl)-15,16-epoxylabda-8(20),13(16),14-trien-19-oate]. A solution of 0.50 g (1.0 mmol) of azlactone III and 0.14 g (1.2 mmol) of benzylamine in 7 ml of benzene was heated for 2 h at 70°C on an oil bath. The solvent was removed under reduced pressure, the residue was treated with 7 ml of diethyl ether, and the precipitate was filtered off, washed with diethyl ether $(3 \times 10 \text{ ml})$, and dried under reduced pressure. Yield 0.38 g (62%). Column chromatography of the mother liquor on silica gel (using chloroform as eluent) gave an additional portion, 0.15 g (24%), of compound V. mp 98–100°C, $[\alpha]_D^{20} = 12.3^\circ$ (c = 5.4, CHCl₃). IR spectrum, v, cm⁻¹: 698, 715, 750, 893, 1516, 1575 (C=C); 1721 (C=O); 1645, 3424 [C(O)NH]. UV spectrum, λ_{max} , nm (log ε): 226 (4.08), 317 (4.36). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.45 s (3H, C¹⁷H₃), 0.93 m (2H, 1-H, 3-H), 1.13 s $(3H, C^{18}H_3), 1.22 \text{ m} (1H, 5-H), 1.44 \text{ m} (1H, 2-H),$ 1.58 m (2H, 9-H, 11-H), 1.70-1.88 m (5H, 11-H, 1-H, 2-H, 7-H, 6-H), 1.94 m (1H, 6-H), 2.09 m (1H, 3-H), 2.32 m (2H, 7-H, 12-H), 2.53 m (1H, 12-H), 3.57 s (3H, OCH₃), 4.86 s (2H, CH₂), 4.55 s and 4.86 s (1H each, 20-H), 6.32 d (1H, 14-H, J = 1.8 Hz), 6.67 s (1H, 1'-H), 7.05 m (4H, 15-H, 4"-H, 3"-H, 5"-H), 7.30 m (5H, NH, 2'-H, 6"-H, 7'-H, 9'-H), 7.41 t (1H, 8'-H, J = 7 Hz), 7.75 d (2H, 6'-H, 10'-H), 8.64 s (1H, 3'-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.48 q (C¹⁷), 19.78 t (C^2) , 23.50 t (C^{12}) , 24.26 t (C^{11}) , 26.15 t (C^6) , 28.64 q (C^{18}) , 38.03 t (C^3) , 38.54 t (C^7) , 38.92 t (C^1) , 40.07 s (C⁴), 43.40 t (CH₂), 44.16 s (C¹⁰), 50.94 q (OCH₃), 55.16 d (C⁹), 56.04 d (C⁵), 106.48 t (C²⁰), 109.00 d (C^{1'}), 112.50 d (C¹⁴), 127.44 d (C^{6'}, C^{10'}), 127.47 s $(C^{2'})$, 127.75 d $(C^{2''}, C^{6''})$, 128.36 d $(C^{3''}, C^{5''})$, 128.36 s $(C^{4''})$, 128.47 d $(C^{7'}, C^{9'})$, 130.52 s (C^{13}) , 131.39 d $(C^{8'})$, 134.32 s (C^{5'}), 134.43 s (C^{1"}), 143.30 d (C¹⁵), 147.06 s (C¹⁶), 147.62 s (C⁸), 165.29 s (C^{4'}), 170.53 s (CONH), 177.61 s (C¹⁹). Found, %: C 75.35; H 7.23; N 4.64. C₃₈H₄₄N₂O₅. Calculated, %: C 75.00; H 7.24; N 4.64.

Methyl (1S,4aR,5S)-5-[2-(2-{2-benzoylamino-3-[2-(4-hydroxyphenyl)ethylamino]-3-oxoprop-1-en-1-yl}furan-3-yl)ethyl]-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate (VI, methyl 16-{2-benzoylamino-3-[2-(4-hydroxyphenyl)ethylamino]-3-oxoprop-1-en-1-yl}-15,16-epoxylabda-8(20),13(16),14-trien-19-oate). A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.14 g (1.0 mmol) of 2-(4-hydroxyphenyl)ethanamine in 7 ml of benzene was heated for 4 h at 70°C on an oil bath. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform-methanol (100:1) as eluent. The subsequent recrystallization from diethyl ether gave 0.53 g (84%) of compound **VI**, mp 125–128°C, $[\alpha]_D^{20} = 13.7^\circ$ $(c = 6.5, \text{CHCl}_3)$. IR spectrum, v, cm⁻¹: 712, 828, 893, 1515 (C=C); 1723 (C=O); 1648, 1650, 3423 (CONH); 3347 (OH). UV spectrum, λ_{max}, nm (logε): 225 (3.33), 316 (3.38). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.43 s $(3H, C^{17}H_3), 0.89 \text{ t.d} (1H, 1-H, J = 13.2, 3.1 \text{ Hz}),$ 0.95 t.d (1H, 3-H, J = 13.3, 2.6 Hz), 1.10 s (3H, $C^{18}H_3$), 1.21 d (1H, 5-H, J = 12.4, 2.2 Hz), 1.42 m (1H, 2-H, ${}^{2}J = 12.6$ Hz), 1.50 m (2H, 9-H, 11-H), 1.61 m (1H, 11-H), 1.66–1.75 m (3H, 1-H, 6-H, 2-H), 1.84 t.d (1H, 7-H, J = 13.2, 3.0 Hz), 1.92 m (1H, 6-H),2.07 d.m (1H, 3-H, ${}^{2}J$ = 13.3 Hz), 2.27 m (1H, 12-H), 2.35 m (1H, 7-H, ${}^{2}J$ = 12.6 Hz), 2.49 m (1H, 12-H), 2.66 t (2H, CH₂, J = 6.3 Hz), 3.45 d.d (2H, CH₂NH, J = 14.1, 6.3 Hz), 3.54 s (3H, OCH₃), 4.51 s and 4.87 s (1H each, 20-H), 6.27 d (1H, 14-H, J = 1.8 Hz),6.63 br.s (1H, CONH), 6.67 m (2H, 3"-H, 5"-H), 6.74 s (1H, 1'-H), 6.86 d (2H, 2"-H, 6"-H, J = 7.2 Hz), 7.29 d (1H, 15-H, J = 1.8 Hz), 7.38 m (2H, 7'-H, 9'-H), 7.46 t (1H, 8'-H, J = 7.1 Hz), 7.83 m (2H, 6'-H, 10'-H),8.00 br.s (1H, OH), 8.56 s (1H, 3'-H). ¹³C NMR spectrum, δ_{C} , ppm: 12.37 q (C¹⁷), 19.62 t (C²), 23.08 t (C^{12}) , 24.02 t (C^{11}) , 25.99 t (C^{6}) , 28.47 q (C^{18}) , 34.34 t (CH_2) , 37.79 t (C^{3}) , 38.34 t (C^{7}) , 38.68 t (C^{1}) , 39.89 s (C⁴), 41.31 t (CH₂N), 44.00 s (C¹⁰), 50.96 q (OCH₃), 54.56 d (C⁹), 55.74 d (C⁵), 106.44 t (C²⁰), 111.44 d (C¹), 112.67 d (C¹⁴), 115.41 d (C^{3"}, C^{5"}), 125.52 s (C^{2'}), 127.31 d (C^{6'}, C^{10'}), 128.48 d (C^{2"}, C^{6"}), 129.33 s (C^{1"}), 129.40 d (C^{7'}, C^{9'}), 130.19 s (C¹³), 132.03 d (C^{8'}), 132.87 s (C^{5'}), 143.38 d (C¹⁵), 145.90 s (C¹⁶), 147.40 s (C⁸), 155.14 s (C^{4"}), 165.25 s (CONH), 166.53 s (C^{4'}), 177.72 s (C¹⁹). Found, %: C 73.15; H 7.36; N 4.45. C₃₉H₄₆N₂O₆. Calculated, %: C 73.35; H 7.21; N 4.39.

Methyl (1*S*,4a*R*,5*S*)-5-(2-{2-[2-benzoylamino-3oxo-3-(3,4,5-trimethoxybenzylamino)prop-1-en-1yl]furan-3-yl}ethyl)-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate {VII, methyl

16-[2-benzoylamino-3-oxo-3-(3,4,5-trimethoxybenzylamino)prop-1-en-1-yl]-15,16-epoxylabda-8(20),13(16),14-trien-19-oate}. A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.22 g (1.1 mmol) of 3,4,5-trimethoxybenzylamine in 7 ml of benzene was heated for 4 h at 70°C on an oil bath. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform as eluent. A fraction containing compound VII was evaporated, and the residue was ground with hexane. Yield 41.0 g (59%), mp 78–80°C, $[\alpha]_{D}^{20}$ = 12.9° (*c* = 3.4, CHCl₃). IR spectrum, v, cm⁻¹: 714, 775, 892, 1508 (C=C); 1721 (C=O); 1638, 1670, 3368, 3410 (CONH). UV spectrum, λ_{max} , nm (log ϵ): 230 (2.94), 316 (3.28). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.47 s (3H, $C^{17}H_3$), 0.94 m (1H, 1-H), 0.99 m (1H, 3-H), 1.15 s (3H, $C^{18}H_3$), 1.24 d.d (1H, 5-H, J = 12.5, 2.8 Hz), 1.46 m (1H, 2-H), 1.56 m (2H, 9-H, 11-H), 1.68–1.81 m (4H, 1-H, 6-H, 2-H, 11-H), 1.86 m $(1H, 7-H), 1.96 \text{ m} (1H, 6-H), 2.13 \text{ d.m} (1H, 3-H, ^2J =$ 13.1 Hz), 2.38 m (2H, 12-H, 7-H), 2.60 m (1H, 12-H), 3.58 s (3H, OCH₃), 3.79 s (3H, 4"-OCH₃), 3.84 s (6H, $3''-OCH_3$, $5''-OCH_3$), 4.51 d (2H, CH₂C₆H₂, J = 6.2 Hz), 4.55 s and 4.89 s (1H each, 20-H), 6.34 d (1H, 14-H, J = 1.8 Hz), 6.61 s (2H, 2"-H, 6"-H), 6.70 t (1H, CONH, J = 6.1 Hz), 6.88 s (1H, 1'-H), 7.37 d (1H, 15-H, J = 1.8 Hz), 7.46 m (2H, 7'-H, 9'-H), 7.54 t (1H, 8'-H, J = 7.4 Hz), 7.90 d (2H, 6'-H, 10'-H, J = 7.8 Hz), 8.60 br.s (1H, 3'-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.49 q (C^{17}), 19.78 t (C^{2}), 23.37 t (C^{12}), 24.23 t (C^{11}), 26.14 t (C⁶), 28.59 q (C¹⁸), 38.03 t (C³), 38.52 t (C⁷), 38.98 t (C¹), 40.06 s (C⁴), 43.94 t (CH₂), 44.17 s (C¹⁰), 50.93 q (OCH₃), 54.94 d (C⁹), 56.04 q (3"-OCH₃, 5"-OCH₃), 56.04 d (C⁵), 65.64 q (4"-OCH₃), 104.57 d $(C^{2''}, C^{6''})$, 106.47 t (C^{20}) , 111.03 d $(C^{1'})$, 112.92 d (C^{14}) , 126.29 s ($C^{2'}$), 127.31 d ($C^{6'}$, $C^{10'}$), 128.65 d ($C^{7'}$, $C^{9'}$), 130.11 s (C^{13}), 132.16 d ($C^{8'}$), 133.22 s, 133.90 s ($C^{4''}$) 130.11 s (C⁻), 132.16 d (C⁻), 133.22 s, 133.90 s (C⁴, C⁵), 137.08 s (C^{1"}), 143.38 d (C¹⁵), 146.31 s (C¹⁶), 147.60 s (C⁸), 153.28 s (C^{3"}, C^{5"}), 164.83 s (CONH), 166.22 s (C^{4'}), 177.52 s (C¹⁹). Found, %: C 70.17; H 7.25; N 3.97. C₄₁H₅₀N₂O₈. Calculated, %: C 70.49; H 7.16; N 4.01.

Methyl (1*S*,4*aR*,5*S*)-5-[2-(2-{2-benzoylamino-3-[2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)ethylamino]-3-oxoprop-1-en-1-yl}furan-3-yl)ethyl]-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate (VIII, methyl 16-{2-benzoylamino-3-[2-(3,5-di*tert*-butyl-4-hydroxyphenyl)ethylamino]-3-oxoprop-1-en-1-yl}-15,16-epoxylabda-8(20),13(16),14-trien-19-oate). A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.27 g (1.1 mmol) of 2-(3,5-di-*tert*-butyl-4-

hydroxyphenyl)ethylamine in 7 ml of benzene was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform as eluent, followed by recrystallization from diethyl ether. Yield 0.57 g (76%), mp 91–93°C, $[\alpha]_D^{20} = 9.4^\circ$ (*c* = 1.9, CHCl₃). IR spectrum, v, cm⁻¹: 713, 750, 769, 890, 1515 (C=C); 1722 (C=O); 1578, 1640, 1665 (CONH); 3300, 3426 (OH, NH). UV spectrum, λ_{max} , nm (log ϵ): 226 (2.89), 316 (3.26). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.48 s (3H, $C^{17}H_3$), 0.94 t.d (1H, 1-H, J = 13.3, 3.8 Hz), 0.99 t.d (1H, 3-H, J = 13.5, 3.5 Hz), 1.14 s (3H, $C^{18}H_3$, 1.25 d.d (1H, 5-H, J = 12.4, 3.0 Hz), 1.37 s (18H, t-Bu), 1.48 m (1H, 2-H), 1.56 m (2H, 9-H, 11-H), 1.68–1.80 m (4H, 1-H, 6-H, 2-H, 11-H), 1.87 m $(1H, 7-H, {}^{2}J = 12.6 \text{ Hz}), 1.96 \text{ m} (1H, 6-H), 2.12 \text{ d.m}$ (1H, 3-H, ${}^{2}J$ = 12.6 Hz), 2.33 m (2H, 12-H, 7-H), 2.58 m (1H, 12-H, J = 14.2, 6.8, 4.2 Hz), 2.79 t (2H, $CH_2C_6H_2$, J = 6.2 Hz), 3.58 s (3H, OCH₃), 3.61 m (2H, NHCH₂), 4.56 s and 4.91 s (1H each, 20-H), 5.07 s (1H, OH), 6.32 d (1H, 14-H, J = 1.8 Hz), 6.54 t (1H, J = 1.8 Hz), 6.5CONH, J = 5.6 Hz), 6.83 s (1H, 1'-H), 7.00 s (2H, 2"-H, 6"-H), 7.34 d (1H, 15-H, J = 1.8 Hz), 7.46 t (2H, 7'-H, 9'-H, J = 7.0 Hz), 7.54 t (1H, 8'-H, J = 7.0 Hz), 7.91 d (2H, 6'-H, 10'-H, J = 7.8 Hz), 8.55 br.s (1H, 3'-H, halfwidth 5.5 Hz). ¹³C NMR spectrum, δ_C , ppm: 12.44 q (C^{17}), 19.69 t (C^{2}), 23.21 t (C^{12}), 24.12 t (C^{11}), 26.07 t (C⁶), 28.56 q (C¹⁸), 30.09 q (CH₃)₃, 34.06 s $[C(CH_3)_3]$, 35.58 t (CH₂C₆H₂), 37.93 t (C³), 38.43 t (C^7) , 38.86 t (C^1) , 39.98 t (CH_2N) , 41.56 s (C^4) , 44.07 s (C^{10}) , 50.96 q (OCH₃), 54.70 d (C⁹), 55.90 d (C⁵), 106.48 t (C²⁰), 110.72 d (C^{1'}), 112.78 d (C¹⁴), 125.11 d $(C^{2''}, C^{6''})$, 126.31 s $(C^{2'})$, 127.32 d $(C^{6'}, C^{10'})$, 128.58 d $(C^{7'}, C^{9'})$, 129.33 s and 129.81 s $(C^{5'}, C^{13})$, 132.05 d $(C^{8'})$, 133.19 s $(C^{1''})$, 135.76 s $(C^{3''}, C^{5''})$, 143.14 d (C^{15}) , 146.24 s (C^{16}) , 147.50 s (C^{8}) , 152.10 s $(C^{4''})$, 164.80 s (CONH), 166.22 s (C^{4'}), 177.58 s (C¹⁹). Found, %: C 74.61; H 8.73; N 3.70. C₄₇H₆₂N₂O₆. Calculated, %: C 75.20; H 8.28; N 3.73.

Methyl (1*S*,4*aR*,5*S*)-5-[2-(2-{2-benzoylamino-3-[3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propylamino]-3-oxoprop-1-en-1-yl}furan-3-yl)ethyl]-1,4adimethyl-6-methylidenedecahydronaphthalene-1carboxylate (IX, methyl 16-{2-benzoylamino-3-[3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propylamino]-3oxoprop-1-en-1-yl}-15,16-epoxylabda-8(20),13(16),-14-trien-19-oate). A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.27 g (1.1 mmol) of 3-(3,5-di-*tert*butyl-4-hydroxyphenyl)propylamine in 7 ml of benzene was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was

subjected to chromatography on silica gel using chloroform as eluent, followed by recrystallization from diethyl ether. Yield 0.69 g (91%), mp 85-87°C, $[\alpha]_{D}^{20} = 11.1^{\circ}$ (c = 3.2, CHCl₃). IR spectrum, v, cm⁻¹: 713, 747, 769, 890, 1513 (C=C); 1546, 1580, 1641, 1665 (CONH); 1723 (C=O); 3325, 3400 (OH, NH). UV spectrum, λ_{max} , nm (log ϵ): 226 (2.89), 315 (3.24). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.48 s (3H, $C^{17}H_3$), 0.93 t.d (1H, 1-H, J = 13.5, 3.2 Hz), 0.98 t.d $(1H, 3-H, J = 13.2, 3.0 \text{ Hz}), 1.14 \text{ s} (3H, C^{18}H_3),$ 1.25 d.d (1H, 5-H, J = 12.8, 2.6 Hz), 1.40 s (18H, t-Bu), 1.45 m (1H, 2-H), 1.55 m (2H, 9-H, 11-H), 1.66-1.80 m (4H, 1-H, 7-H, 2-H, 11-H), 1.86 m (3H, NCH₂CH₂, 6-H), 1.96 d.m (1H, 6-H, ${}^{2}J = 12.8$ Hz), 2.12 d.m (1H, 3-H, ${}^{2}J$ = 13.2 Hz), 2.38 m (2H, 12-H, 7-H), 2.58 m (3H, CH₂C₆H₂, 12-H), 3.41 m (2H, NCH₂), 3.58 s (3H, OCH₃), 4.56 s and 4.92 s (1H each, 20-H), 5.03 s (1H, OH), 6.33 d (1H, 14-H, J = 1.8 Hz), 6.52 t (1H, NH, J = 6.2 Hz), 6.81 s (1H, 1'-H), 6.97 s(2H, 2"-H, 6"-H), 7.35 d (1H, 15-H, J = 1.8 Hz), 7.47 t (2H, 7'-H, 9'-H, J = 7.2 Hz), 7.55 t (1H, 8'-H, J = 7.2 Hz), 7.93 d (2H, 6'-H, 10'-H, J = 7.2 Hz), 8.59 br.s (1H, 3'-H, halfwidth 5.6 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 12.50 q (C^{17}), 19.76 t (C^{2}), 23.27 t (C^{12}), 24.21 t (C^{11}) , 26.13 t (C^{6}), 28.61 q (C^{18}), 30.21 q [$C(CH_3)_3$], 31.59 t (CH₂), 35.09 t (CH₂C₆H₂), 34.14 s [C(CH₃)₃], 37.99 t (C³), 38.51 t (C⁷), 38.92 t (C¹), 39.69 t (CH₂N), 40.04 s (C⁴), 44.13 s (C¹⁰), 51.03 q (OCH₃), 54.74 d (C⁹), 55.95 d (C⁵), 106.55 t (C²⁰), 110.60 d (C^{1'}), 112.87 d (C¹⁴), 124.76 d (C^{2"}, C^{6"}), 126.53 s (C²), 127.38 d (C^{6'}, C^{10'}), 128.65 d (C^{7'}, C^{9'}), 129.79 s (C¹³), 132.03 s (C^{5'}), 132.14 d (C^{8'}), 133.25 s (C^{1"}), 135.62 s (C^{3"}, C^{5"}), 143.17 d (C¹⁵), 146.36 s (C¹⁶), 147.57 s (C⁸), 151.74 s ($C^{4''}$), 164.88 s (CONH), 166.22 s ($C^{4'}$), 177.65 s (C^{19}). Found, %: C 75.32; H 8.63; N 3.62. C₄₈H₂O₆N₆₄. Calculated, %: C 75.39; H 8.38, N 3.66.

7-[2-Benzoylamino-3-(3-{2-[(1*S*,4*aR*,5*S*)-5-methoxycarbonyl-5,8a-dimethyl-2-methylidedecahydronaphthalen-1-yl]ethyl}furan-2-yl)prop-2-enoylamino]heptanoic acid (X, methyl 16-[2-benzoylamino-3-(6-carboxyhexylamino)-3-oxoprop-1-en-1yl]-15,16-epoxylabda-8(20),13(16),14-trien-19-oate (X). 7-Aminoheptanoic acid, 0.17 g (1.1 mmol), was added to a solution of 0.50 g (1.0 mmol) of azlactone III in 7 ml of benzene, and the mixture was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform as eluent. The subsequent recrystallization from diethyl ether gave 0.47 g (73%) of compound X. mp 106–109°C, $[\alpha]_D^{20} =$ 17.3° (*c* = 2.5, CHCl₃). IR spectrum, v, cm⁻¹: 712, 889,

907, 1522 (C=C); 1572, 1650, 1661 (CONH); 1717 (CO₂Me); 3274, 3300 (OH, NH). UV spectrum, λ_{max} , nm (log ɛ): 227 (3.05), 315 (3.25). ¹H NMR spectrum $(CDCl_3)$, δ , ppm: 0.48 s (3H, $C^{17}H_3$), 0.92 t.d (1H, 1-H, J = 13.3, 3.4 Hz), 0.98 t.d (1H, 3-H, J = 13.1, 2.9 Hz), 1.14 s (3H, $C^{18}H_3$), 1.24 d.d (1H, 5-H, J = 12.6, 2.8 Hz), 1.34 m (4H, 5"-H, 4"-H), 1.45 m (1H, 2-H, $^{2}J = 12.8 \text{ Hz}$, 1.50–1.62 m (5H, 9-H, 6"-H, 3"-H), 1.66 m (1H, 2-H), 1.70–1.79 m (4H, 1-H, 6-H, 11-H), 1.86 t.d (1H, 7-H, J = 12.8, 3.6 Hz), 1.95 d.m (1H, 6-H, ${}^{2}J = 12.8$ Hz), 2.11 d.m (1H, 3-H, ${}^{2}J = 13.1$ Hz), 2.28 t (2H, 2"-H, J = 7.2 Hz), 2.34 m and 2.37 m (1H each, 12-H, 7-H), 2.56 m (1H, 12-H, J = 14.8, 6.6, 4.0 Hz), 3.32 m (2H, 7"-H), 3.57 s (3H, OCH₃), 4.55 s and 4.91 s (1H each, 20-H), 6.30 d (1H, 14-H, J =1.8 Hz), 6.57 t (1H, CONH, J = 6.0 Hz), 6.81 s (1H, 1'-H), 7.33 d (1H, 15-H, J = 1.8 Hz), 7.46 m (2H, 7'-H, 9'-H), 7.52 t (1H, 8'-H, J = 7 Hz), 7.91 m (2H, 6'-H, 10'-H), 8.56 br.s (1H, 3'-H, halfwidth 4.8 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 12.47 q (C¹⁷), 19.74 t (C^2) , 23.26 t (C^{12}) , 24.18 t (C^{11}) , 24.33 t $(C^{6''})$, 26.11 t (C⁶), 26.24 t and 28.44 t (C^{5"}, C^{4"}), 28.59 q (C¹⁸), 29.01 t (C^{3"}), 33.72 t (C^{2"}), 37.97 t (C³), 38.50 t (C⁷), 38.89 t (C^{1}) , 39.79 t $(C^{7''})$, 40.01 s (C^{4}) , 44.12 s (C^{10}) , 51.01 q (OCH_3) , 54.74 d (C^9) , 55.94 d (C^5) , 106.50 t (C^{20}) , 110.60 d (C^{1'}), 112.82 d (C¹⁴), 126.12 s (C^{2'}), 127.39 d $(C^{6'}, C^{10'})$, 128.61 d $(C^{7'}, C^{9'})$, 130.04 s (C^{13}) , 132.10 d $(C^{8'})$, 133.21 s $(C^{5'})$, 143.24 d (C^{15}) , 146.24 s (C^{16}) , 147.56 s (C⁸), 164.88 s (CONH), 165.05 s (C^{4'}), 177.64 (C¹⁹), 178.30 s (C^{7"}). Found, %: C 71.02; H 7.59; N 4.29. C₃₈H₅₀N₂O₇. Calculated, %: C 70.59; H 7.74; N 4.33.

Methyl (1S,4aR,5S)-5-(2-{2-[2-benzoylamino-3benzvl(methyl)amino-3-oxoprop-1-en-1-yl]furan-3yl}ethyl)-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate {XI, methyl 16-[2-benzovlamino-3-benzyl(methyl)amino-3-oxoprop-1-en-1-yl]-15,16-epoxylabda-8(20),13(16),14-trien-19oate}. A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.15 g (1.2 mmol) of N-benzylmethanamine in 7 ml of benzene was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using petroleum ether-diethyl ether (1:1) as eluent. The subsequent recrystallization from petroleum ether gave 0.49 g (80%) of compound XI. mp 69–72°C, $[\alpha]_{D}^{20} = 9.9^{\circ}$ (c = 3.1, CHCl₃). IR spectrum, v, cm⁻¹: 706, 732, 890, 912, 1515 (C=C); 1720 (CO₂Me); 1581, 1646, 1680, 3419 (CONH). UV spectrum, λ_{max} , nm (log ϵ): 226 (3.11), 319 (3.12). ¹H NMR spectrum, δ , ppm: in CDCl₃: 0.48 s and 0.50 s (3H, $C^{17}H_3$), 0.87 m

(1H, 1-H), 1.02 t.d (1H, 3-H), 1.17 s (3H, C¹⁸H₃), 1.26 m (1H, 5-H), 1.51 m (3H, 9-H, 11-H, 2-H), 1.71-1.98 m (6H, 1-H, 6-H, 2-H, 11-H, 7-H), 2.14 m (1H, 3-H), 2.37 m (2H, 12-H, 7-H), 2.56 m (1H, 12-H), 3.03 s (3H, NCH₃), 3.62 s (3H, OCH₃), 4.55 s and 4.57 s (1H, 20-H), 4.71 s and 4.78 s (2H, CH₂), 4.90 s and 4.94 s (1H, 20-H), 5.74 s and 5.81 s (1H, 1'-H), 6.32 s and 6.38 s (1H, 14-H), 7.32-7.45 m (4H, 15-H, 3"-H, 4"-H, 5"-H), 7.49 m (2H, 7'-H, 9'-H), 7.53 m (3H, 2"-H, 6"-H, 8'-H), 7.96 d (2H, 6'-H, 10'-H), 9.51 br.s (1H, 3'-H); in DMSO- d_6 : 0.30 s (3H, C¹⁷H₃); 0.79 m (1H, 1-H): 0.89 t.d (1H, 3-H, J = 13.2, 3.0 Hz): 0.99 s (3H, $C^{18}H_3$); 1.16 d.d (1H, 5-H, J = 12.6, 2.8 Hz); 1.28 m and 144 m (3H, 9-H, 11-H, 2-H); 1.56 m, 1.74 t, and 1.80 m (6H, 1-H, 6-H, 2-H, 11-H, 7-H, J = 13 Hz); 1.91 d (1H, 3-H, J = 14 Hz); 2.22 m (2H, 12-H, 7-H); 2.72 m (1H, 12-H); 3.22 s (3H, NCH₃); 3.42 s (3H, OCH₃); 4.45 s (1H, 20-H); 4.51 m $(2H, CH_2, J = 7.0 Hz); 4.78 s (1H, 20-H); 5.92 s$ 1'-H); 6.39 s (1H, 14-H); 7.16 m and 7.24 m (5H, Ph); 7.42 t (2H, 7'-H, 9'-H, J = 7.2 Hz); 7.49 t (1H, 8'-H, J = 7.2 Hz): 7.62 d (1H, 15-H, J = 1.8 Hz): 7.90 d (2H, 6'-H, 10'-H, J = 7.2 Hz); 9.87 s (1H, 3'-H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 12.62 q (C¹⁷), 19.90 t (C²), 23.01 t and 23.22 t (C^{12}), 24.14 t and 24.31 t (C^{11}), 26.26 t (C⁶), 28.74 q (C¹⁸), 32.93 t and 36.44 t (NCH₂Ph), 38.14 t (C^3), 38.65 t (C^7), 39.04 t (C^1), 40.14 s (C^4), 44.28 s (C^{10}), 51.13 q (OCH₃), 50.56 q (NCH₃), 54.62 d and 54.71 d (C⁹), 55.16 q (NCH₃), 56.11 d (C^5), 100.77 d and 101.04 d ($C^{1'}$), 106.50 t (C^{20}) , 112.94 d (C^{14}) , 126.02 s and 126.19 s $(C^{2'})$, 127.02 d ($C^{4''}$), 127.43 d ($C^{6'}$, $C^{10'}$), 127.75 s (C^{13}), 128.26 d ($C^{2''}$, $C^{6''}$), 128.62 d ($C^{3''}$, $C^{5''}$), 128.79 d ($C^{7'}$, $C^{9'}$), 132.21 d ($C^{8'}$), 133.20 s ($C^{5'}$), 136.92 s and 137.12 s (C^{1"}), 141.94 d (C¹⁵), 146.71 s and 147.10 s (C^{16}) , 147.82 s and 147.81 s (C^8) , 163.95 s and 164.13 s [CON(CH₃)CH₂Ph], 167.86 s and 168.44 s (C^{4'}), 177.69 s (C¹⁹). Found, %: C 75.23; H 7.36; N 4.10. C₃₉H₄₆N₂O₅. Calculated, %: C 75.24; H 7.36; N 4.50.

Methyl (1*S*,4*aR*,5*S*)-5-{2-[2-(2-benzoylamino-3oxo-3-piperidinoprop-1-en-1-yl)furan-3-yl]ethyl}-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate [XII, methyl 16-(2-benzoylamino-3-oxo-3-piperidinoprop-1-en-1-yl)-15,16-epoxylabda-8(20),13(16),14-trien-19-oate]. Piperidine, 0.10 g (1.2 mmol), was added to a solution of 0.50 g (1.0 mmol) of azlactone III in 7 ml of benzene, and the mixture was heated for 5 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using

chloroform as eluent. A fraction containing compound XII was evaporated, and the residue was ground with hexane. Yield 0.43 g (73%), mp 89–90°C, $[\alpha]_{D}^{20} = 13.7^{\circ}$ $(c = 3.3, \text{CHCl}_3)$. IR spectrum, v, cm⁻¹: 707, 853, 889, 1514 (C=C); 1723 (C=O); 1581, 1644, 1683, 3423 (CONH). UV spectrum, λ_{max} , nm (log ϵ): 227 (4.16), 320 (4.23). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.49 s $(3H, C^{17}H_3), 0.94 \text{ m} (1H, 1-H), 1.00 \text{ t.d} (1H, 3-H, J =$ 13.3, 3.1 Hz), 1.16 s (3H, C¹⁸H₃), 1.26 d.d (1H, 5-H, J = 12.6, 2.8 Hz), 1.50 m (1H, 2-H), 1.57–1.82 m (12H, 9-H, 11-H, 1-H, 6-H, 2-H, 3"-H, 4"-H, 4'-H, 5"-H), 1.83 t.d (1H, 7-H, J = 12.6, 3.4 Hz), 1.96 m (1H, 6-H), 2.14 d.m (1H, 3-H, ${}^{2}J = 13.3$ Hz), 2.31 m (1H, 12-H), 2.11 m (1H, 7-H, $^{2}J = 12.6$ Hz), 2.55 m (1H, 12-H), 3.60 s (3H, OCH₃), 3.60 m (4H, 2"-H, 6"-H), 4.58 s and 4.92 s (1H each, 20-H), 5.67 s (1H, 1'-H), 6.35 d (1H, 14-H, J = 1.8 Hz), 7.47 m (3H, 15-H, 7'-H, 9'-H), 7.52 t (1H, 8'-H, J = 7 Hz), 7.91 d (2H, 6'-H, 10'-H, J = 8 Hz), 9.47 br.s (1H, 3'-H).¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.50 q (C¹⁷), 19.78 t (C^2) , 23.15 t (C^{12}) , 24.23 t (C^{11}) , 24.60 t $(C^{4''})$, 25.18 t and 25.38 t (C^{3"}, C^{5"}), 26.12 t (C⁶), 28.61 q (C¹⁸), 38.01 t (C³), 38.52 t (C⁷), 38.97 t (C¹), 40.05 s (C⁴), 42.78 t and 48.45 t (C^{2"}, C^{6"}), 44.16 s (C¹⁰), 51.02 q (OCH₃), 54.58 d (C⁹), 55.96 d (C⁵), 100.12 d (C^{1'}), 106.35 t (C²⁰), 112.80 d (C¹⁴), 125.55 s (C^{2'}), 127.26 d (C^{6'}, $C^{10'}$, 127.71 s (C^{13}), 128.62 d ($C^{7'}$, $C^{9'}$), 132.97 d ($C^{8'}$), 133.23 s (C^{5'}), 141.68 d (C¹⁵), 146.99 s (C¹⁶), 147.80 s (C^8) , 163.67 s (CONH), 166.21 s $(C^{4'})$, 177.58 s (C^{19}) . Found, %: C 73.72; H 7.85; N 4.78. C₃₆H₄₆N₂O₅. Calculated, %: C 73.72; H 7.85; N 4.78.

tret-Butyl 1-[(2Z)-2-benzoylamino-3-(3-{2-[(1S,4aR,5S)-5-methoxycarbonyl-5,8a-dimethyl-2methylidenedecahydronaphthalen-1-yl]ethyl}furan-2-yl)prop-2-enoyl]pyrrolidine-2-carboxylate (XIII). A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.20 g (1.2 mmol) of L-proline tert-butyl ester in 7 ml of benzene was heated for 5 h at 70°C. The solvent was removed under reduced pressure, and the residue was recrystallized from diethyl ether. Yield 0.56 g (83%), mp 173–175°C, $[\alpha]_D^{20} = 17.9^\circ$ (*c* = 3.3, CHCl₃). IR spectrum, v, cm⁻¹: 720, 760, 886, 909, 1510 (C=C); 1727 (C=O); 1580, 1638, 1661, 3422, 3510 (CONH). UV spectrum, λ_{max} , nm (log ϵ): 228 (3.13), 319 (3.22). ¹H NMR spectrum, δ , ppm: in CDCl₃: 0.48 s (3H, $C^{17}H_3$), 1.00 m (2H, 1-H, 3-H), 1.15 s (3H, $C^{18}H_3$), 1.26 d.d (1H, 5-H), 1.47 s (12H, t-Bu, 2-H, 4"-H), 1.57 s (2H, 9-H, 11-H), 1.68-1.90 m (5H, 1-H, 7-H, 2-H, 11-H, 6-H), 1.96 m (3H, 6-H, 3"-H), 2.12 m (1H, 3-H), 2.31 m (1H, 12-H), 2.40 m (1H, 7-H), 2.56 m (1H, 12-H), 3.58 s (3H, OCH₃), 3.79 m (2H, 5"-H),

4.53 s (1H, 20-H), 4.55 m (1H, 2'-H), 4.91 s (1H, 20-H), 5.86 s and 5.94 s (1H, 1'-H), 6.34 d and 6.35 d (1H, 14-H, J = 1.8 Hz), 7.45 m (3H, 15-H, 7'-H, 9'-H),7.53 m (1H, 8'-H), 7.88 d (2H, 6'-H, 10'-H, J = 7.8 Hz), 9.24 br.s and 9.30 br.s (1H, 3'-H); in DMSO-d₆: 0.31 s (3H, C¹⁷H₃), 0.87 m (2H, 1-H, 3-H), 0.99 s (3H, $C^{18}H_3$, 1.16 m (1H, 5-H), 1.29 s (9H, *t*-Bu), 1.43 m and 1.49 m (3H, 2-H, 4"-H), 1.58-1.79 m (10H, 1-H, 2-H, 6-H, 7-H, 9-H, 11-H, 3'-H, 3"-H), 1.91 d.m (1H, 3-H, ${}^{2}J = 13.2$ Hz), 2.05 m (1H, 12-H), 2.19 m and 2.24 m (2H, 7-H, 12-H), 3.22 s (3H, OCH₃), 3.50 m (2H, 5"-H), 4.10 d.d (1H, 2"-H, J = 7, 5 Hz), 4.46 s (1H, 20-H), 4.78 s (1H, 20-H), 6.06 s (1H, 1'-H), 6.40 d (1H, 14-H, J = 1.8 Hz), 7.40 t (2H, 7'-H, 9'-H, J = 7.2 Hz), 7.48 t (1H, 8'-H, J = 7.2 Hz), 7.60 d (1H, 15-H, J = 1.8 Hz), 7.87 d (2H, 6'-H, 10'-H, J = 7.2 Hz), 9.82 s (1H, 3'-H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 12.63 q (C¹⁷), 19.76 t (C²), 23.36 t (C¹²), 24.42 t (C¹¹), 25.06 t (C^{4″}), 26.12 t (C⁶), 27.87 q (C^{18}) , 28.03 q $[C(CH_3)_3]$, 29.00 t $(C^{3''})$, 37.79 t (C^{3}) , 38.26 t (C⁷), 38.63 t (C¹), 40.18 s (C⁴), 43.94 s (C¹⁰), 49.10 t (C^{5"}), 51.31 q (OCH₃), 54.59 d (C⁹), 55.39 d (C^5) , 59.98 t $(C^{2''})$, 80.40 s $[C(CH_3)_3]$, 106.63 t (C^{20}) , 109.27 d (C^{1'}), 113.08 d (C¹⁴), 126.58 s (C^{2'}), 127.41 d (C¹³), 127.96 s (C², C^{6'}, C^{10'}), 128.81 d (C^{7'}, C^{9'}), 132.17 d ($C^{8'}$), 133.35 s ($C^{5'}$), 145.82 d (C^{15}), 146.56 s (C^{16}) , 147.96 s (C^8) , 164.31 s (CONH), 165.87 s $(C^{4'})$, 171.48 s (C=O), 177.71 s (C¹⁹). Found, %: C 71.21; H 7.86; N 3.91. C₄₀H₅₂N₂O₇. Calculated, %: C 71.42; H 7.73; N 4.17.

Methyl (1S,4aR,5S)-5-(2-{2-[(Z)-2-benzoylamino-3-(1-methoxycarbonyl-2-methylbutylamino)-3-oxoprop-1-en-1-yl]furan-3-yl}ethyl)-1,4a-dimethyl-6methylidenedecahydronaphthalene-1-carboxylate {XIV, methyl 16-[(Z)-2-benzoylamino-3-(1-methoxycarbonyl-2-methylbutylamino)-3-oxoprop-1-en-1-yl]-15,16-epoxylabda-8(20),13(16),14-trien-19oate}. A mixture of 0.35 g (0.64 mmol) of azlactone **III** and 0.12 g (0.77 mmol) of L-isoleucine methyl ester in 7 ml of benzene was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform-methanol (200:1) as eluent. A fraction containing compound XIV was evaporated, and the residue was crystallized from petroleum ether. Yield 0.35 g (78%), mp 57–60°C, $[\alpha]_{D}^{20} = 15.8^{\circ}$ (c = 3.2, CHCl₃). IR spectrum, v, cm⁻¹: 712, 748, 891, 1511 (C=C); 1273, 1724 (C=O); 1578, 1652, 1673, 3369, 3431 (CONH). UV spectrum, λ_{max} , nm (log ϵ): 227 (3.18), 317 (3.06). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.45 s (3H, $C^{17}H_3$), 0.89 t (3H, 6"-H, J = 7 Hz),

1.13 s (3H, C¹⁸H₃), 1.17 m (1H, 5"-H), 1.28 d.d (1H, 5-H, J = 12.6, 2.6 Hz), 1.44 m (2H, 2-H, 5"-H), 1.56 m (1H, 9-H), 1.58 m (1H, 11-H), 1.67–1.81 m (4H, 11-H, 2-H, 1-H, 7-H), 1.86 m (1H, 6-H, J = 12, 4 Hz), 1.94 m (2H, 6-H, 4"-H), 2.10 m (1H, 3-H), 2.38 m (2H, 7-H, 12-H), 2.57 m (1H, 12-H), 3.56 s (3H, OCH₃), 3.68 s (3H, OCH₃), 4.54 s (1H, 20-H), 4.70 d.d (1H, 3''-H, J = 8.2, 4.5 Hz), 4.91 s (1H, 20-H), 6.32 d(1H, 14-H, J = 1.8 Hz), 6.85 s (1H, 1'-H), 6.91 d (1H, 1'-H)2"-H, J = 5.8 Hz), 7.36 d (1H, 15-H, J = 1.8 Hz), 7.46 t (2H, 7'-H, 9'-H, J = 7.8 Hz), 7.53 t (1H, 8'-H, J = 7.8 Hz), 7.91 d (2H, 10'-H, 6'-H, J = 8 Hz), 8.54 s (1H, 3'-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 11.46 q (C^{6"}), 12.43 q (C¹⁷), 15.25 q (CH₃), 19.69 t (C²), 23.29 t (C¹²), 24.16 t (C¹¹), 25.03 t (C^{5"}), 26.07 t (C⁶), 28.55 q (C¹⁸), 37.93 t (C³), 37.99 d (C^{4"}), 38.40 t (C⁷), 38.85 t (C^{1}) , 39.97 s (C^{4}) , 44.07 s (C^{10}) , 50.95 q (OCH_{3}) , 51.86 q (OCH₃), 54.75 d (C⁹), 55.89 d (C⁵), 56.67 d (C^{3"}), 106.45 t (C²⁰), 111.22 d (C^{1'}), 112.85 d (C¹⁴), 125.86 s ($C^{2'}$), 127.28 d ($C^{10'}$, $C^{6'}$), 128.58 d ($C^{7'}$, $C^{9'}$), 130.18 s (C¹³), 131.98 d (C^{8'}), 133.37 s (C^{5'}), 143.30 d (C^{15}) , 146.19 s (C^{16}) , 147.50 s (C^8) , 164.33 s $(C^{1''})$, 166.33 s (C^{4'}), 172.20 (C=O), 177.57 s (C¹⁹). Found, %: C 70.44; H 7.73; N 4.15. C₃₈H₅₀N₂O₇. Calculated, %: C 70.59: H 7.73: N 4.33.

 $0.93 \text{ d} (3\text{H}, \text{CH}_3, J = 7.2 \text{ Hz}), 0.98 \text{ m} (2\text{H}, 1\text{-H}, 3\text{-H}),$

Methyl (1S,4aR,5S)-5-(2-{2-[(Z)-2-benzoylamino-3-(1-tert-butoxycarbonyl-3-methylbutylamino)-3oxoprop-1-en-1-vl]furan-3-vl}ethvl)-1,4a-dimethvl-6-methylidenedecahydronaphthalene-1-carboxylate {XV, methyl 16-[(Z)-2-benzoylamino-3-(1-tert-butoxycarbonyl-3-methylbutylamino)-3-oxoprop-1-en-1-vl]-15.16-epoxvlabda-8(20).13(16).14-trien-19oate (XV). A mixture of 0.50 g (1.0 mmol) of azlactone III and 0.17 g (1.2 mmol) of L-leucine tert-butyl ester in 7 ml of benzene was heated for 6 h at 70°C. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using petroleum ether-diethyl ether (2:1) as eluent. A fraction containing compound XV was evaporated, and the residue was recrystallized from petroleum ether. Yield 0.41 g (62%), mp 122–124°C, $[\alpha]_{\rm D}^{20}$ = 17.8° (c = 3.4, CHCl₃). IR spectrum, v, cm⁻¹: 694, 728, 848, 889, 1518 (C=C); 1725 (C=O); 1553, 1581, 1631-1651, 3262, 3440 (CONH). UV spectrum, λ_{max} , nm (logε): 226 (4.06), 317 (4.26). ¹H NMR spectrum $(CDCl_3)$, δ , ppm: 0.46 s (3H, $C^{17}H_3$), 0.91 d and 0.96 d (6H, CH₃, J = 7.0 Hz), 0.98 m (2H, 1-H, 3-H), 1.13 s $(3H, C^{18}H_3), 1.24 \text{ d.d} (1H, 5-H, J = 12.8, 2.8 \text{ Hz}),$ 1.42 s [9H, C(CH₃)₃], 1.49 m (1H, 2-H), 1.55 m (2H, 9-H, 11-H), 1.57-1.78 m (6H, 11-H, 1-H, 2-H, 6-H,

4"-H), 1.87 m (1H, 7-H), 1.94 d.m (1H, 6-H, ${}^{2}J$ = 13.8 Hz), 2.10 d.m (1H, 3-H, J = 13.6 Hz), 2.38 m (2H, 7-H, 12-H), 2.58 m (1H, 12-H), 3.57 s (3H, OCH₃), 4.57 s (1H, 20-H), 4.62 m (1H, 3"-H), 4.91 s (1H, 20-H), 6.31 d (1H, 14-H, J = 1.8 Hz), 6.76 m (1H, 14-H)2"-H), 6.86 s (1H, 1'-H), 7.35 d (1H, 15-H, J =1.8 Hz), 7.46 t (2H, 7'-H, 9'-H, J = 7.8 Hz), 7.53 t (1H, 8'-H, J = 7.8 Hz), 7.92 d (2H, 6'-H, 10'-H, J = 7.8 Hz), 8.47 s (1H, 3'-H). ¹³C NMR spectrum, δ_{C} , ppm: 12.46 g (C¹⁷), 19.71 t (C²), 22.16 q and 22.63 q (5"-CH₃), 23.31 t (C¹²), 24.16 t (C¹¹), 24.72 q (C^{5"}), 26.09 t (C⁶), 27.82 q [C(CH₃)₃], 28.59 q (C¹⁸), 37.95 t (C³), 38.44 t (C^{7}) , 38.88 t (C^{1}) , 39.98 s (C^{4}) , 42.07 t $(C^{4''})$, 44.10 s (C^{10}) , 50.98 q (OCH₃), 51.67 d $(C^{3''})$, 54.70 d (C^{9}) , 55.92 d (C^5), 81.61 d [$C(CH_3)_3$], 106.48 t (C^{20}), 111.51 d (C^{1'}), 112.82 d (C¹⁴), 125.90 s (C^{2'}), 127.34 d (C^{10'}, C^{6'}), 128.57 d (C^{7'}, C^{9'}), 130.28 s (C¹³), 131.97 d $(C^{8'})$, 133.42 s $(C^{5'})$, 143.27 d (C^{15}) , 146.22 s (C^{16}) , 147.52 s (C^8), 164.16 s ($C^{1''}$), 166.24 s ($C^{4'}$), 171.99 s (C=O), 177.62 s (C¹⁹). Found, %: C 71.55; H 8.23; N 4.20. C₄₁H₅₆N₂O₇. Calculated, %: C 71.51; H 8.14; N 4.07.

(Z)-2-Benzoylamino-3-(3-{2-[(1S,4aR,5S)-5methoxycarbonyl-5,8a-dimethyl-2-methylidedecahydronaphthalen-1-yl]ethyl}furan-2-yl)prop-2-enoic acid {XVI, (Z)-2-benzoylamino-3-[15,16-epoxy-19-methoxy-19-oxolabda-8(20),13(16),14-trien-16yl]prop-2-enoic acid}. *a*. A saturated solution of hydrogen chloride in 10 ml of diethyl ether was added to a solution of 0.50 g (1.0 mmol) of compound III in 5 ml of diethyl ether, and the mixture was left overnight. The precipitate was filtered off and dried under reduced pressure. Yield 0.45 g (87%).

b. Potassium hydroxide, 0.07 g (1.2 mmol), was added to a solution of 0.50 g (1.0 mmol) of compound **III** in 5 ml of ethanol. The mixture was stirred for 6 h, left to stand overnight, poured onto ice, and extracted with chloroform $(3 \times 20 \text{ ml})$. The extracts were combined, washed with cold water $(3 \times 20 \text{ ml})$, dried over MgSO₄, and evaporated under reduced pressure. The residue was recrystallized from diethyl ether. Yield 0.43 g (82%), mp 211–213°C, $[\alpha]_{\rm D}^{20} = 15.5^{\circ}$ (c = 3.2, CHCl₃). IR spectrum, v, cm⁻¹: 724, 752, 891, 1510 (C=C); 1572, 1603, 1642, 1665 (CONH); 1693, 1725 (C=O); 3360 (NH, OH). UV spectrum, λ_{max} , nm (log ε): 224 (3.02), 319 (3.22). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.48 s (3H, $C^{17}H_3$), 0.95 t.d (1H, 1-H, J = 13.2, 3.2 Hz), 1.00 t.d (1H, 3-H, J = 13.3, 3.2 Hz), 1.15 s $(3H, C^{18}H_3), 1.26 \text{ d.d} (1H, 5-H, J = 12.6, 2.6 \text{ Hz}),$ 1.47 d.m (1H, 2-H, J = 13.2 Hz), 1.60 m (2H, 9-H, 11-H), 1.69–1.80 m (4H, 1-H, 6-H, 2-H, 11-H), 1.88 m

(1H, 7-H), 1.97 d.m (1H, 6-H, ${}^{2}J = 13.1$ Hz), 2.12 d.m $(1H, 3-H, {}^{2}J = 13.3 \text{ Hz}), 2.40 \text{ m} (2H, 12-H, 7-H),$ 2.64 m (1H, 12-H, J = 14.5, 6.8, 4.2 Hz), 3.58 s (3H, OCH₃), 4.57 s and 4.94 s (2H, 20-H), 6.39 d (1H, 14-H, J = 1.8 Hz), 7.15 s (1H, 1'-H), 7.46 d (1H, 15-H, *J* = 1.8 Hz), 7.49 t (2H, 7'-H, 9'-H, *J* = 7.4 Hz), 7.57 t (1H, 8'-H, J = 7.4 Hz), 7.93 d (2H, 6'-H, 10'-H, J =7.4 Hz), 8.65 br.s (1H, 3'-H). ¹³C NMR spectrum, δ_{C} , ppm: 12.51 q (C^{17}), 19.76 t (C^{2}), 23.50 t (C^{12}), 24.24 t (C^{11}), 26.14 t (C^{6}), 28.63 q (C^{18}), 38.00 t (C^{3}), 38.48 t (C^{7}) , 38.92 t (C^{1}) , 40.05 s (C^{4}) , 44.15 s (C^{10}) , 51.04 q (OCH₃), 54.82 d (C⁹), 56.00 d (C⁵), 106.61 t (C²⁰), 113.29 d (C¹⁴), 115.31 d (C^{1'}), 121.78 s (C^{2'}), 127.46 d (C^{6'}, C^{10'}), 128.71 d (C^{7'}, C^{9'}), 132.31 d (C^{8'}), 132.67 s (C^{13}) , 133.11 s $(C^{5'})$, 144.34 d (C^{15}) , 145.99 s (C^{16}) , 147.43 s (C⁸), 166.40 s (C⁴), 167.60 s (C=O), 177.70 s (C¹⁹). Mass spectrum, m/z (I_{rel} , %): 501 [M - 18] (3), 275 (6), 315 (6), 252 (6), 239 (10), 121 (12), 105 (100), 77 (23). Found, %: C 75.32; H 8.63; N 3.62. C₃₁H₃₇NO₆. Calculated, %: C 75.39; H 8.38; N 3.66.

Methyl (1S,4aR,5S)-5-(2-{2-[(Z)-2-benzoylamino-3-hydrazino-3-oxoprop-1-en-1-yl]furan-3-yl}ethyl)-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate {XVII, methyl 16-[(Z)-2-benzoylamino-3-hydrazino-3-oxoprop-1-en-1-yl]-15,16-epoxylabda-8(20),13(16),14-trien-19-oate}. Hydrazine hydrate, 0.2 ml, was added dropwise under stirring to a solution of 1.00 g (2.0 mmol) of azlactone III in 10 ml of methanol. The mixture was stirred for 5 h and left overnight, the solvent was removed under reduced pressure, and the residue was ground with hexane. Yield 0.96 g (90%), mp 72–75°C, $[\alpha]_{D}^{20} = 2.76^{\circ}$ (c = 3.2, CHCl₃). IR spectrum, v, cm⁻¹: 713, 750, 888, 1467 (C=C); 1722 (C=O); 1665, 1664, 3309 (CONH, NH₂). UV spectrum, λ_{max} , nm (log ϵ): 225 (2.99), 318 (3.11), 405 (2.02). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.47 s (3H, C¹⁷H₃), 0.94 m (2H, 1-H, 3-H), 1.14 s (3H, $C^{18}H_3$), 1.25 d.d (1H, 5-H, J = 12.6, 2.8 Hz), 1.46 m (1H, 2-H), 1.55 m (1H, 9-H), 1.66–1.80 m (5H, 1-H, 6-H, 2-H, 11-H), 1.87 t.d (1H, 7-H, J = 13.0, 3.3 Hz), 1.96 d.m (1H, 6-H, ${}^{2}J$ = 12.6 Hz), 2.12 d.m (1H, 3-H, $^{2}J = 13.3$ Hz), 2.34 m (1H, 12-H), 2.38 m (1H, 7-H), 2.57 m (1H, 12-H), 3.57 s (3H, OCH₃), 3.60 br.s (2H, NH₂), 4.55 s and 4.92 s (1H each, 20-H), 6.33 d (1H, 14-H, J = 1.8 Hz), 6.75 s (1H, 1'-H), 7.32 s (1H, CONH), 7.36 d (1H, 15-H, J = 1.8 Hz), 7.44 t (2H, 7'-H, 9'-H, J = 7.2 Hz), 7.52 t (1H, 8'-H, J = 7.2 Hz), 7.89 d (2H, 6'-H, 10'-H, J = 7.2 Hz), 8.60 br.s (1H, 3'-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.51 q (C¹⁷), 19.74 t (C²), 23.30 t (C¹²), 24.16 t (C¹¹), 26.10 t (C⁶), 28.66 q (C^{18}), 37.98 t (C^{3}), 38.38 t (C^{7}), 38.92 t (C^{1}),

40.03 s (C⁴), 44.12 s (C¹⁰), 51.05 q (OCH₃), 54.92 d (C^9) , 56.00 d (C^5) , 106.06 t (C^{20}) , 111.11 d $(C^{1'})$, 113.04 d (C^{14}), 124.43 s ($C^{2'}$), 127.47 d ($C^{6'}$, $C^{10'}$), 129.19 d ($C^{7'}$, $C^{9'}$), 130.48 s (C^{13}), 132.20 s ($C^{5'}$), 133.10 d ($C^{8'}$), 142.78 d (C^{15}), 146.09 s (C^{16}), 147.40 s (C⁸), 165.53 s (C^{4'}, CONH), 177.56 s (C¹⁹). Found, %: C 69.23; H 7.39; N 7.46. C₃₁H₃₉N₃O₅. Calculated, %: C 69.79; H 7.31; N 7.88.

Methyl (1S,4aR,5S)-5-(2-{2-[(Z)-2-benzoylamino-3-(N'-phenylhydrazino)-3-oxoprop-1-en-1-yl]furan-3-yl}ethyl)-1,4a-dimethyl-6-methylidenedecahydronaphthalene-1-carboxylate {XVIII, methyl 16-[(Z)-2-benzoylamino-3-(N'-phenylhydrazino)-3-oxoprop-1-en-1-yl]-15,16-epoxylabda-8(20),13(16),14-trien-19-oate} (XVIII). Phenylhydrazine, 0.13 g (2.0 mmol), was added dropwise under stirring to a solution of 0.50 g (1.0 mmol) of azlactone III in 10 ml of methanol, and the mixture was stirred for 5 h and left overnight. The solvent was removed under reduced pressure, the residue was subjected to chromatography on silica gel using chloroform as eluent, and the product was additionally purified by recrystallization from diethyl ether. Yield 0.47 g (77%), mp 141–144°C, $[\alpha]_{D}^{20}$ = 5.9° (c = 2.2, CHCl₃). IR spectrum, v, cm⁻¹: 692, 760, 899, 1496 (C=C); 1723 (C=O); 1624, 1644, 1664, 3239, 3325, 3431 (CONH, NH). UV spectrum, λ_{max} , nm (log ε): 233 (3.96), 318 (3.96). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.46 s (3H, C¹⁷H₃), 0.92 t.d (1H, 1-H, J = 13.0, 3.0 Hz), 0.97 t.d (1H, 3-H, J = 13.1, 3.2 Hz), 1.13 s (3H, $C^{18}H_3$), 1.24 d.d (1H, 5-H, J = 12.8, 3.0 Hz), 1.45 d.m (1H, 2-H, $^{2}J = 13$ Hz), 1.55 s (1H, 9-H), 1.60 m (1H, 11-H), 1.67-1.76 m (4H, 1-H, 7-H, 2-H, 11-H), 1.84 m (1H, 7-H), 1.93 m (1H, 6-H), 2.12 d.m (1H, 3-H, ${}^{2}J$ = 13.1 Hz), 2.39 m (2H, 12-H, 7-H), 2.59 m (1H, 12-H), 3.57 s (3H, OCH₃), 4.57 s and 4.93 s (1H each, 20-H), 6.26 br.s (1H, NHPh, halfwidth 12 Hz), 6.35 d (1H, 14-H, J = 1.8 Hz), 6.73 t (1H, 4''-H, J = 8 Hz), 6.90 m (3H, 1'-H, 2''-H, 6''-H)J = 8 Hz), 7.20 t (2H, 3"-H, 5"-H, J = 8 Hz), 7.40 d (1H, 15-H, J = 1.8 Hz), 7.47 t (2H, 7'-H, 9'-H, J = 7.2 Hz), 7.56 t (1H, 8'-H, J = 7.2 Hz), 7.93 d (2H, 6'-H, 10'-H, J = 7 Hz), 8.33 br.s (1H, CONH, halfwidth 5 Hz), 8.64 s (1H, 3'-H). 13 C NMR spectrum, δ_{C} , ppm: 12.48 q (C 17), 19.74 t (C 2), 23.34 t (C 12), 24.18 t (C¹¹), 26.11 t (C⁶), 28.58 q (C¹⁸), 37.98 t (C³), 38.49 t (C⁷), 38.92 t (C¹), 40.03 s (C⁴), 44.13 s (C¹⁰), 50.97 q (OCH₃), 54.78 d (C⁹), 55.98 d (C⁵), 106.52 t (C²⁰), 111.85 d ($C^{1'}$), 113.04 d (C^{14}), 113.69 d ($C^{2''}$, $C^{6''}$), 120.89 d ($C^{4''}$), 124.45 s ($C^{2'}$), 127.37 d ($C^{6'}$, $C^{10'}$), 128.69 d and 128.96 d $(C^{7'}, C^{9'} \text{ or } C^{3''}, C^{5''})$, 132.34 s (C^{13}) , 132.42 d $(C^{8'})$, 133.04 s $(C^{5'})$, 143.83 d (C^{15}) ,

from diethyl ether. Yield 0.19 g (80%), mp 165–168°C, $[\alpha]_D^{20} = 17.5^\circ$ (c = 2.8, CHCl₃). IR spectrum, v, cm⁻¹: 692, 770, 892, 1519 (C=C); 1640, 1670 (C=O, C=N); 1724 (C=O); 3202, 3409 (NH). UV spectrum, λ_{max} , nm (logε): 254 (3.16), 327 (3.22), 340 (3.22); in 1 M NaOH: 285, 320, 405; in 1 M HCl: 251, 326, 340. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.48 s (3H, $C^{17'}H_3$, 1.02 m (1H, 1'-H), 1.06 m (1H, 3'-H), 1.15 s $(3H, C^{18'}H_3)$, 1.31 d.d (1H, 5'-H, J = 12.0, 2.8 Hz), 1.52 d.m (1H, 2'-H, ${}^{2}J = 14$ Hz), 1.65 m (2H, 9'-H, 11'-H), 1.73–1.88 m (4H, 1'-H, 6'-H, 2'-H, 11'-H), 1.93 m (1H, 7'-H), 2.02 m (1H, 6'-H), 2.18 d.m (1H, 3'-H, J = 13.0 Hz), 2.42 m (1H, 12'-H), 2.47 m (1H, 7'-H), 2.65 m (1H, 12'-H), 3.58 s (3H, OCH₃), 4.59 s and 4.94 s (1H each, 20'-H), 6.33 s (1H, 5a-H), 6.38 d (1H, 14'-H, J = 1.8 Hz), 7.46 d (1H, 15'-H, J = 1.8 Hz),7.47 m (3H, 3"-H, 4"-H, 5"-H), 7.73 m (2H, 2"-H, 6"-H), 9.07 s (1H, 1-H), 9.09 s (1H, 4-H). ¹³C NMR spectrum, δ_C , ppm: 12.38 q (C^{17'}), 19.67 t (C^{2'}), 23.19 t (C^{12'}), 24.19 t (C^{11'}), 26.03 t (C^{6'}), 28.52 q (C^{18'}), 37.96 t $(C^{3'})$, 38.43 t $(C^{7'})$, 38.88 t $(C^{1'})$, 39.93 s $(C^{4'})$, 44.05 s (C^{10'}), 50.87 q (OCH₃), 54.89 d (C^{9'}), 55.98 d (C^{5'}), 91.36 d (C^{5a}), 106.45 t ($C^{20'}$), 112.96 d ($C^{14'}$), 123.96 s (C^{5}), 125.11 d ($C^{2''}$, $C^{6''}$), 131.03 d ($C^{3''}$, $C^{5''}$), 130.40 d ($C^{4''}$), 131.03 s ($C^{13'}$), 141.04 d ($C^{15'}$), 141.42 s ($C^{16'}$), 147.40 s (C^{1"}), 148.11 s (C^{8'}), 159.49 s (C³), 161.38 s (C⁶), 177.53 s (C^{19'}). Mass spectrum, m/z (I_{rel} , %): 515 $[M]^+$ (26), 279 (21), 266 (33), 187 (83), 130 (18), 121 (100), 118 (55), 109 (39), 105 (34), 93 (30), 77 (47), 55 (57), 43 (60). Found: $[M]^+$ 515.27657. C₃₁H₃₇N₃O₄. Calculated: M 515.27839.

146.19 s (C¹⁶), 147.55 s (C⁸), 147.55 s (C^{1"}), 165.57 s

decahydronaphthalene-1-carboxylate {XIX, methyl

15,16-epoxy-16-[(Z)-6-oxo-3-phenyl-1,4,5,6-tetra-

hvdro-1.2.4-triazin-5-vlidenemethvlllabda-8(20).-

13(16),14-trien-19-oate}. A mixture of 0.50 g

(0.9 mmol) of hydrazide XVIII and 10 ml of 1 M

aqueous sodium hydroxide was heated for 10 min at

100°C. The mixture was cooled, acidified to pH 1 by

adding 1 ml of 6 M hydrochloric acid, and extracted

with chloroform $(3 \times 25 \text{ ml})$. The extracts were com-

bined, washed with water $(3 \times 20 \text{ ml})$, and dried over

MgSO₄. The solvent was removed under reduced pres-

sure, and the residue was subjected to chromatography

on silica gel using petroleum ether-chloroform (1:1)

as eluent. The product was additionally recrystallized

Methyl (1S,4aR,5S)-1,4a-dimethyl-6-methylidene-5-(2-{2-[(Z)-6-oxo-3-phenyl-1,4,5,6-tetrahydro-1,2,4-triazin-5-ylidenemethyl]furan-3-yl}ethyl)-

(C^{4'}), 166.65 s (CONH), 177.57 s (C¹⁹).

851

Methyl (1S,4aR,5S)-1,4a-dimethyl-6-methylidene-5-(2-{2-[(Z)-5-oxo-2-phenyl-4,5-dihydro-1*H*-imidazol-4-ylidenemethyl]furan-3-yl}ethyl)decahydronaphthalene-1-carboxylate {XX, methyl 15,16-epoxy-16-[(Z)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-4-ylidenemethyl]labda-8(20),13(16),14-trien-19oate}. A mixture of 0.25 g (0.5 mmol) of compound III, 0.06 g (0.6 mmol) of sodium carbonate, and 10 ml of aqueous ammonia was heated for 14 h at 110-115°C in a sealed ampule. The ampule was cooled and opened, and the mixture was poured into 30 ml of water and extracted with methylene chloride $(3 \times 30 \text{ ml})$. The extracts were combined, dried over MgSO₄, and evaporated under reduced pressure, and the residue was subjected to chromatography on silica gel using chloroform as eluent. Fractions containing compound XX were evaporated, and the product was recrystallized from diethyl ether. Yield 0.14 g (56%), mp 208-209°C, $[\alpha]_{D}^{20} = 12.5^{\circ}$ (c = 1.1, CHCl₃). IR spectrum, v, cm⁻¹: 694, 784, 899, 918, 1500, 1531, 1598, 1631, 3069 (C=C, C=N); 1700, 1722 (C=O); 3120, 3200, 3400, 3427 (NH). UV spectrum, λ_{max} , nm (log ϵ): 266 (3.94), 407 (4.19), 420 (4.03). ¹H NMR spectrum $(CDCl_3)$, δ , ppm: 0.49 s (3H, C^{17'}H₃), 0.85 t.d (1H, 1'-H, J = 13.2, 4.2 Hz), 0.94 t.d (1H, 3'-H, J = 13.2, 4.0 Hz), 1.10 s (3H, $C^{18'}H_3$), 1.19 d.d (1H, 5'-H, J = 12.5, 2.8 Hz), 1.43 d.m (1H, 2'-H, J = 14.4 Hz), 1.58 m (1H, 9'-H), 1.69-1.88 m (6H, 1'-H, 6'-H, 2'-H, 11'-H, 7'-H), 1.91 m (1H, 6'-H), 2.09 d.m (1H, 3'-H, $^{2}J =$ 12.4 Hz), 2.42 d.d.d (1H, 7'-H, J = 12.2, 4.2, 2.5 Hz), 2.68 m and 2.74 m (2H, 12'-H), 3.57 s (3H, OCH₃), 4.65 s and 5.02 s (1H each, 20'-H), 6.43 d (1H, 14-H, J = 1.7 Hz), 7.03 br.s (1H, 4a-H), 7.54 m (3H, 3"-H, 5"-H, 4"-H), 7.72 d (1H, 15-H, J = 1.7 Hz), 8.19 m (2H, 2"-H, 6"-H), 11.79 s (1H, 1-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.64 q (${\rm C}^{17'}$), 19.79 t (${\rm C}^{2'}$), 23.70 t (C¹²), 24.16 t (C¹¹), 26.16 t (C⁶), 28.52 q (C¹⁸), 38.00 t (C³), 38.52 t (C⁷), 38.90 t (C^{1'}), 40.01 s (C^{4'}), 44.16 s (C^{10'}), 51.00 q (OCH₃), 54.26 d (C^{9'}), 56.06 d (C^{5'}), 106.71 t (C^{20'}), 112.70 d (C^{4a}), 113.70 d (C^{14'}), 127.24 d $(C^{2''}, C^{6''})$, 128.06 s $(C^{1''})$, 128.82 d $(C^{3''}, C^{5''})$, 132.00 d

 $(C^{4''})$, 135.82 s $(C^{13'})$, 137.02 s $(C^{16'})$, 147.39 d $(C^{15'})$, 147.64 s $(C^{8'})$, 148.01 s (C^{4}) , 158.04 s (C^{2}) , 174.05 s (C^{5}) , 177.59 s $(C^{19'})$. Found, %: C 74.61; H 7.11; N 5.41. $C_{31}H_{36}N_2O_4$. Calculated, %: C 74.40; H 7.20; N 5.60.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 06-03-32150) and by the President of the Russian Federation (program for support of young scientists, project no. MK 2180.2005.3).

REFERENCES

- Kharitonov, Yu.V., Shul'ts, E.E., Shakirov, M.M., and Tolstikov, G.A., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 707.
- 2. Erlenmeyer, E. and Kunlin, A., Justus Liebigs Ann. Chem., 1901, vol. 316, p. 145.
- 3. Rao, Y.S. and Filler, R., Synthesis, 1975, p. 749.
- 4. Mukerjee, A.K. and Kumar, P., *Heterocycles*, 1981, vol. 16, p. 1995.
- Klok, D.A., Shakirov, M.M., Grishko, V.V., and Raldugin, V.A., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1995, p. 2514.
- 6. Erlenmeyer, E. and Stadlin, W., Justus Liebigs Ann. Chem., 1904, vol. 337, p. 283.
- 7. Galat, A., J. Am. Chem. Soc., 1950, vol. 72, p. 4436.
- Stewart, W.E. and Siddall, T.H., III, *Chem. Rev.*, 1970, vol. 70, p. 517.
- Kobayashi, J., Sekigichi, M., Shigemori, H., and Ohsaki, A., *Tetrahedron Lett.*, 2000, vol. 41, p. 2939.
- 10. Uddin, M.J., Kokubo, S., Ueda, K., Suenaga, K., and Uemura, D., *J. Nat. Prod.*, 2001, vol. 64, p. 1169.
- 11. Nalepa, K. and Slouka, J., *Monatsh. Chem.*, 1967, vol. 98, p. 412.
- 12. Nalepa, K., Monatsh. Chem., 1967, vol. 98, p. 1230.
- 13. Prokof'ev, E.P. and Karpeiskaya, E.I., *Tetrahedron Lett.*, 1979, p. 737.
- Tolstikova, T.G., Sorokina, I.V., Dolgikh, M.P., Kharitonov, Yu.V., Chernov, S.V., Shul'ts, E.E., and Tolstikov, G.A., *Khim.-Farm. Zh.*, 2004, vol. 38, no. 10, p. 13.